By Salerno | March 14, 2020
1. Linear Models
The target value is expected to be a linear combination of the features.
1.1. Ordinary Least Squares (OLS)
The OLS is a optimization math technique that aim to find the better adjustment for a set data and try to minimize the residual sum of squares between the observed targets in the dataset and the targets predicted by the linear approximation.
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
## LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
reg.coef_
## array([0.5, 0.5])
2. Linear Regression Example - Diabetes Dataset
# Code source: Jaques Grobler
# License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
# Load the diabetes dataset
diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
# Use only one feature
diabetes_X = diabetes_X[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Make predictions using the testing set
## LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
diabetes_y_pred = regr.predict(diabetes_X_test)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
## Coefficients:
## [938.23786125]
print('Mean squared error: %.2f'
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# The coefficient of determination: 1 is perfect prediction
## Mean squared error: 2548.07
print('Coefficient of determination: %.2f'
% r2_score(diabetes_y_test, diabetes_y_pred))
# Plot outputs
## Coefficient of determination: 0.47
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
plt.xticks(())
## ([], <a list of 0 Text xticklabel objects>)
plt.yticks(())
## ([], <a list of 0 Text yticklabel objects>)
plt.show()
comments powered by Disqus