By Salerno | December 18, 2019
Data Frame
This format is usually used when the information is not contained in just one dimension (vector)
Example
product <- c("Product A", "Product B", "Product C", "Product D", "Product E")
price <- c(5, 15, 4, 6, 8)
table_price_product <- data.frame(product, price)
table_price_product
## product price
## 1 Product A 5
## 2 Product B 15
## 3 Product C 4
## 4 Product D 6
## 5 Product E 8
Indexing
Access the D Product in the Products Table:
table_price_product[4,2]
## [1] 6
Acces the Products D and E:
table_price_product[4:5,2]
## [1] 6 8
Acces a specific column in a data frame:
table_price_product$product
## [1] Product A Product B Product C Product D Product E
## Levels: Product A Product B Product C Product D Product E
table_price_product[,"product"]
## [1] Product A Product B Product C Product D Product E
## Levels: Product A Product B Product C Product D Product E
Creating a new column:
table_price_product$quantity <- c(50, 100, 120, 150, 200)
table_price_product
## product price quantity
## 1 Product A 5 50
## 2 Product B 15 100
## 3 Product C 4 120
## 4 Product D 6 150
## 5 Product E 8 200
Or as weel you can use this format:
table_price_product[, "costs"] <- c(2, 12, 3, 5, 6)
Knowing the column’s names:
names(table_price_product)
## [1] "product" "price" "quantity" "costs"
Data Frame summary:
summary(table_price_product)
## product price quantity costs
## Product A:1 Min. : 4.0 Min. : 50 Min. : 2.0
## Product B:1 1st Qu.: 5.0 1st Qu.:100 1st Qu.: 3.0
## Product C:1 Median : 6.0 Median :120 Median : 5.0
## Product D:1 Mean : 7.6 Mean :124 Mean : 5.6
## Product E:1 3rd Qu.: 8.0 3rd Qu.:150 3rd Qu.: 6.0
## Max. :15.0 Max. :200 Max. :12.0
Number os rows:
nrow(table_price_product)
## [1] 5
Number os columns:
ncol(table_price_product)
## [1] 4
Dimension’s table:
dim(table_price_product)
## [1] 5 4
comments powered by Disqus