Blogs

PostgreSQL in Ubuntu...under construction ;)

# 1) Super user sudo su # 2) Looking for postgresql versions apt-cache search postgresql-9.* # 3) Installing on Ubuntu # 3.1) Create the file repository configuration: sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list' # 3.2) Import the repository signing key: wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add - # 3.3) Update the package lists: sudo apt-get update # 3.4) Install the latest version of PostgreSQL.

Continue reading

Joining data with dplyr

1) Introduction What about knowing more about some important concepts around manipulating data sets? We definitely know how it is tough working in the real problems world, a lot of information sprawled in many databases. With the knowledge shared below you’ll probably find a solution that fits in your day-a-day as data scientists. Enjoy my folks! 2) Datasets parts <- readRDS('C://Users//andre//OneDrive//Documentos//Private//Salerno//Pessoal//Cursos//datacamp//dplyr//parts.rds') parts_categories <- readRDS('C://Users//andre//OneDrive//Documentos//Private//Salerno//Pessoal//Cursos//datacamp//dplyr//part_categories.rds') inventories <- readRDS('C://Users//andre//OneDrive//Documentos//Private//Salerno//Pessoal//Cursos//datacamp//dplyr//inventories.rds') inventory_parts <- readRDS('C://Users//andre//OneDrive//Documentos//Private//Salerno//Pessoal//Cursos//datacamp//dplyr//inventory_parts.rds') sets <- readRDS('C://Users//andre//OneDrive//Documentos//Private//Salerno//Pessoal//Cursos//datacamp//dplyr//sets.

Continue reading

SQL Intermediate

1) Introduction This a set of exercises that around the SQL Intermediate course that I’ve studied at DataCamp (which I really recommend!). In fact, the databases used there was different that I’ve used here. In other to accomplish the goals of practice as you study, I studied a lot of new concepts of SQL language and I’ve tried to use in a different environment (RStudio) and a new dataset. I hope you enjoy a lot as I do!

Continue reading

PostgreSQL and RStudio

1) Introduction It is so straightforward working with the IDE RStudio (in my opinion, one of the most relevant and easy to use) and a connection with a DataBase (in this case we are using PostgreSQL). Check it out in the lines below one way (of course there are other options) to connect. Enjoy it! 2) Packages we are using DBI dplyr odbc # 2) Important packages ---- library(DBI) library(dplyr) library(odbc) 3) Checking out the data sources available This is one important step that you have to check if the driver that you want was installed in your machine.

Continue reading

Modeling with tidymodels in R

1) Machine Learning with tidymodels In this chapter, you’ll explore the rich ecosystem of R packages that power tidymodels and learn how they can streamline your machine learning workflows. You’ll then put your tidymodels skills to the test by predicting house sale prices in Seattle, Washington. 1.1) Tidymodels packages tidymodels is a collection of machine learning packages designed to simplify the machine learning workflow in R. In this exercise, you will assign each package within the tidymodels ecosystem to its corresponding process within the machine learning workflow.

Continue reading

Modeling with tidymodels in R

1) Machine Learning with tidymodels In this chapter, you’ll explore the rich ecosystem of R packages that power tidymodels and learn how they can streamline your machine learning workflows. You’ll then put your tidymodels skills to the test by predicting house sale prices in Seattle, Washington. 1.1) Tidymodels packages tidymodels is a collection of machine learning packages designed to simplify the machine learning workflow in R. In this exercise, you will assign each package within the tidymodels ecosystem to its corresponding process within the machine learning workflow.

Continue reading

Dicas de livros free

Livros free Confira os links nos títulos descritos abaixo de livros super bem recomendados na Amazon.com.br sem custo, ou ainda em demais links na web: Introductory Statistics Understanding Statistics and Experimental Design Decision Making under Deep Uncertainty Data Driven Introductory Business Statistics Ethics and Data Science Thinking in JavaScript Thinking in CSS An Introduction to APIs Pro Git Rmarkdown for Scientists Esta lista será frequentemente atualizada. Caso queira deixar algum link aqui, faça contato através do email: salerno@datafintechsolutions.

Continue reading

Otimização e Programação Linear

Introdução Se olharmos para os mais variados recursos disponíveis em nossa sociedade, logo perceberemos que vivemos em um mundo com limitação de recursos. Sabemos que não se pode extrair a quantidade que desejar a qualquer hora nas plataformas de petróleo. A água do nosso planeta…….nosso salário….nosso precioso tempo também é muito escasso! Bem, acho que já consegui te convencer! Mas se olharmos para disciplinas como a economia, veremos que um dos seus fortes pilares é a gestão da escassez.

Continue reading

Tidyverse

O mundo Tidyverse Dentro do processo diário de análise de dados, você provalmente usará um dos pacotes abaixo (ou todos eles!): ggplot2 dplyr tidyr readr purrr tibble stringr forcats Mas saiba que esses não são os únicos packages dentro do mundo Tidyverse. Existem muitos outros pacotes que são instalados, principalmente aqueles relacionados a leitura de dados, datas e muitos mais (ex.: DBI, httr, googledrive, lubridate e etc). Você certamente encontrará muitos packages para toda a jornada de dados listada abaixo:

Continue reading

Supervised Learning in R: Classification

Chapter 1 - k-Nearest Neighbors (kNN) 1.1 - Recognizing a road sign with kNN After several trips with a human behind the wheel, it is time for the self-driving car to attempt the test course alone. As it begins to drive away, its camera captures the following image: Figure 1: A caption Can you apply a kNN classifier to help the car recognize this sign? The dataset signs must be loaded in your workspace along with the dataframe next_sign, which holds the observation you want to classify.

Continue reading